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PROPAGATION OF SHOCK WAVES IN POLYDISPERSE GAS SUSPENSIONS 

A. G. Kutushev and S. P. Rodionov UDC 532.529:518.5 

Actual gas suspensions are always polydisperse, i.e., they contain particles of dif- 
ferent sizes. The presence of only one or a few particle fractions, each of which contains 
particles of the same size, is presumed for the description of particle motion in most of the 
presently known models of gas suspensions [1-4]. The drawback of such a description is that 
the actual continuous size distribution of the particles is ignored. The equations of motion 
of polydisperse gas suspensions with a continuous particle size distribution function have 
been considered in a linear (acoustic) approximation in [5, 6]. It was shown in [6] that 
the motion of a polydisperse gas suspension cannot be described completely, in general, using 
a model of a monodisperse gas suspension. The problem of describing the motion of a poly- 
disperse gas suspension with a continuous particle size distribution function behind non- 
linear (shock) waves arises in this connection. 

In the present paper we obtain a system of integrodifferential equations of motion of 
an inert, polydisperse gas suspension with a continuous particle size distribution function 
with allowance for collisions between particles of different sizes. On the basis of the 
equations derived and the method developed for their numerical solution, we calculate the 
structure and damping of shocks in polydisperse gas suspensions. We establish the satis- 
factory agreement between the calculated data and the results of [7, 8]. We show that the 
structure of shocks in polydisperse gas suspensions depends to a considerable extent on the 
disperse composition of the ensemble of particles. 

i. Basic Equations. By analogy with [5, 6], a polydisperse gas suspension is assumed 
to consist of a collection of an infinite number of monodisperse fractions of spherical in- 
compressible particles, the radius of which is in the interval from a to a + da. The number 
of particles in one such fraction per unit volume is 

d ~ = R ( a ,  x, t)da, 

where  x i s  t h e  s p a t i a l  c o o r d i n a t e  o f  t h e  p a r t i c l e s ;  t i s  t i m e ;  N i s  t h e  s i z e  d i s t r i b u t i o n  
f u n c t i o n  o f  t h e  p a r t i c l e s .  The t o t a l  number  o f  p a r t i c l e s  o f  a l l  s i z e s  p e r  u n i t  vo lume  o f  t h e  
m i x t u r e  i s  

amax 

n =  N (a, x, t) da 
amin 

Tyumen'. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 2, pp. 24- 
31, March-April, 1993. Original article submitted July 23, 1991; revision submitted January 
29, 1992. 
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(ami n and ama x are the minimum and maximum particle sizes). The quantity dfi is assumed to be 
large enough that the motion of a particle fraction can be described by the methods of the 
mechanics of multiphase continuous media [i]. 

We also make the following assumptions: in the initial state, the polydisperse gas sus- 
pension is homogeneous [N(a, x, 0) = N0(a), n(x, 0) = n o = const]; there is no mass transfer 
between phases or fragmentation and agglomeration of particles; collisions between particles 
of different sizes are absolutely elastic; there are no external mass forces; the contribu- 
tions of unsteady Archimedes forces, the associated mass, and the Busse force to the total 
force of the interaction between the phases of gas and particles are negligible. The latter 
assumption is valid if the particle content by volume in the mixture is sufficiently small 
(much less than unity) [9]. 

We illustrate the derivation of the equations of motion of a polydisperse gas suspension 
with a continuous particle size distribution function using the example of the equation of 
conservation of mass for the suspension, which for a monodisperse particle fraction (with 
radii in the range from a to a + da) has the form 

a(d'~e) -t- a ( d p 2 ) ~  --  0 (d'P2 : m , d n  ~ m 2 N d a ) ,  ( 1 . 1 )  
at ax 

where  d~2 i s  t h e  mean p a r t i c l e  d e n s i t y  o f  t h e  m o n o d i s p e r s e  f r a c t i o n ;  and m2 and v2 a r e  t h e  
mass  and v e l o c i t y  o f  p a r t i c l e s  o f  r a d i u s  a .  A f t e r  d i v i d i n g  t h e  l e f t  and r i g h t  s i d e s  o f  Eq. 
( 1 . 1 )  by ~2da ,  we g e t  t h e  e q u a t i o n  o f  c o n s e r v a t i o n  o f  numbers  o f  p a r t i c l e s ,  which  in  t h e  a b -  
s e n c e  o f  p h a s e  t r a n s i t i o n s  i s  e q u i v a l e n t  t o  t h e  e q u a t i o n  o f  c o n s e r v a t i o n  o f  mass  f o r  t h e  
s u s p e n s i o n :  

aNy 2 
0Y + (1 2) a--? -~-x  =0"  

Reasoning similarly, we obtain the system of equations of motion of a polydisperse gas 
suspension, generalizing the corresponding system of equations for a multifraction gas sus- 
pension [i] to the case of a continuous particle size distribution: 

m2 ot - -  o~ 

rn, ~ "5[" ~ ax = Nql~; 
\ 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

a~)l aPlPl : O; 
a-T § o--7 

r Op ~ : ,, + = --F12; 
ot ~ ox O-x 

0 (t0xElb, 1 _[_ Boy) -t'- 0 (p~zlV 1 _~_ pay) = 0, o (#1vl + E0) + 

P l =  0 % .  al + a2 = t,  E, : e l +  0,5v~, 

o q : ~  p~ ~da, m2 :T~p=a  , (1 .7 )  

E~ : e~ + 0,5~], Eo = ~ m2"E2 "~da, 
A 

E e l :  m2E~v2Nda , tzv = -~2 
A A 

E q u a t i o n s  ( 1 . 2 ) - ( 1 . 4 )  a r e  t h e  l aws  o f  c o n s e r v a t i o n  o f  p a r t i c l e  mass  and momentum, as  
w e l l  a s  t h e  e q u a t i o n  o f  h e a t  i n f l u x  t o  t h e  d i s p e r s e  p a r t i c l e s  o f  r a d i u s  a ;  ( 1 . 5 )  and ( 1 . 6 )  
are the laws of conservations of gas mass and momentum; (1.7) is the law of conservation of 
the total energy of the mixture. Here the subscripts i and 2 pertain to parameters of the 
gas and particles, respectively; quantities that depend on particle radius a are marked by 
a tilde ~; the symbol~ A below the integral sign shows integration over particle sizes from 
ami n to amax; Pi, P'~, ai, vi, eir and E i are the average and true density, content by volume, 
mass velocity, specific internal energy, and total energy of the i-th phase (i = i, 2); ~2 
and F'2 are the specific internal energy and total energy of particles of radius a; Ep is 
the total energy of all particles per unit volume of the mixture; E0v is the total energy 
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flux of the ensemble of particles through a unit surface per unit time; ~v, is the average- 
mass velocity of the disperse particles; p is the gas pressure; f~ is the interphase fric- 
tional force between single particles of radius a and the gas; fc is the force of collisions 
between a single particle of radius a and particles of other sizes; F12 is the interphase 
frictional force exerted by the gas on the ensemble of particles of different sizes per unit 
volume of the mixture; ql2 is the intensity of the thermal interaction between the gas and 
particles of radius a. 

We close the system of integrodifferential equations (1.2)-(1.7) by specifying the 
equations of state of the phases and the laws of interaction between phases and interaction 
between colliding particles of different sizes. For the equations of state of the phases 
we take the equations of an ideal, calorically perfect gas and of incompressible solid par- 
ticles: 

P--,1B1T1,  e l=s iT1  ( B l = ( y - - l ) c l _ _ = c o n s t ) ,  p ~ = c o n s t ,  e 2 = c e T  2 ( 1 . 8 )  
(c~ = c o n s t ) .  

Here R I is the gas constant; c i are the specific heats of the gas (i = I) and the particles 
(i =_2) at constant volume; y is the adiabatic index of the gas; T l is the gas temperature; 
and T 2 is the temperature of the fraction of particles of radius a. 

The interphase frictional force {~ and the intensity of contact heat transfer 412 be- 
tween an individual particle of radius a and the gaseous phase are specified by the equations 
[i] 

( 1. 9 ) 

, ~ 0 , 5  0,33 NoI2 = 2 @ 0,()Re12 Pr, , Pr, = 7c~1/t l  (il, ~1 = const), 

where  Cd i s  t h e  a e r o d y n a m i c  d r a g  c o e f f i c i e n t  f o r  a s o l i d  s p h e r i c a l  p a r t i c l e ;  Nu12, P r l ,  and 
Re,2  a r e  t h e  N u s s e l t ,  P r a n d t l ,  and R e y n o l d s  number s ;  and g~ and s a r e  t h e  dynamic  v i s c o s i t y  and 
t h e r m a l  c o n d u c t i v i t y  o f  t h e  g a s .  

The equation for the force {c of collisions between particles of different sizes is 
obtained by calculating the number of collisions between particles of radius a and particles 
of radius a I per unit volume of space and per unit time. We then multiply that number of 
collisions by the change in the momentum of a particle of radius a in one elastic collision, 
and then sum over all sizes al: 

8a" ( ) ^ o ~  

A 

/(a, a]) = (a~a)3(at + a)2(a~ + aa) - ' ,  ( 1 . 1 0 )  

W= V2(a, X, t ) --  F2(al, x, t) ( a m , . ~ a ~ a  . . . .  ) 

( •  i s  a c o e f f i c i e n t  c h a r a c t e r i z i n g  t h e  f r a c t i o n  o f  t h e  momentum t r a n s f e r r e d ,  on t h e  a v e r a g e ,  
f rom a p a r t i c l e  o f  r a d i u s  a t o  a p a r t i c l e  o f  r a d i u s  a 1 in  one c o l l i s i o n  be tween  t h e m ) .  Ac- 
c o r d i n g  t o  t h e  e x p e r i m e n t a l  d a t a  o f  [ 1 0 ] ,  f o r  r e l a t i v e  c o l l i s i o n  v e l o c i t i e s  -10  m / s e c ,  we h a v e  
• ~ 0.i. 

2. Statement of the Problem. We consider the following problem, which applies to the 
conditions of the experiments described in [7, 8], in which the laws of propagation of shocks 
in inert gas suspensions were studied with shock tubes. 

We have a straight shock tube of length L, consisting of a high-pressure and a low- 
pressure chamber (HPC and LPC, respectively), separated by a diaphragm. At the initial time 
t = 0, the HPC (O~X~X,) is filled with compressed gas, and the LPC is partially (x, < x < 
x**) filled with undisturbed gas and partially (x**~x~L) with a polydisperse mixture of 
inert, solid spherical particles. Our aim is to describe the evolution of the shock, origi- 
nating in the LPC after the rupture of the diaphragm (decay of the initial discontinuity), 
that passes through the gas suspension at t > 0. 

The initial conditions for the formulated problem are 

t, (x, o) p. ,  p~ (..  o) ~ . . . .  Of*, T l  (x ,  (P) = To, 

z,~ (x.  0) = 0, ~ (x,  0) := 1, ~ (x,  0) = 0 (0 <~ x ~< x . ) ,  
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p (x, t)) = p,,, e~ (x, o) ~ =P10, T l ( x , 0 ) =  T O , 

z'l(x, ~t) = O, a l (x .  0 ) =  1, a~(x, O) = 0 ( x , < x < x * * ~ .  

p (x, (0 -- P,,, p~ (x. 0) 0 ( 2 . 1 )  = Pl0, T 1 (x, O) = Y'o, 

vl(x, 0)=0, a,(x, 0)=~,o, ~2(x, O)=a2o= l-alo,  
(a, x, o) = 0. ~ (a, x, O) = To, Y (a, x, 0) -- No (a) (z** < x <~ L). 

For  t h e  b o u n d a r y  c o n d i t i o n  a t  t h e  l e f t  end o f  t h e  shock  t u b e  (x = 0 ) ,  we t a k e  t h e  con-  
d i t i o n  of equality of the velocity of the gaseous phase to zero: 

v,(0, t ) = 0 .  ( 2 . 2 )  

We did not set up a boundary condition for the disperse phase at x = 0 because of the 
absence of particles in the vicinity of the left-hand wall of the tube during the entire 
time of the investigated motion. At the right-hand end of the shock tube (x = L) we set 
up the condition of nonpenetration for the gas and free penetration for the particles: 

v~(L, t )=O,  ~2(a, L+, Z)=Y2(a, L_, t). ( 2 . 3 )  

The s y s t e m  o f  i n t e g r o d i f f e r e n t i a l  e q u a t i o n s  (1.1)-(1.10) w i t h  i n i t i a l  c o n d i t i o n s  (2.1) 
and bounda ry  c o n d i t i o n s  ( 2 . 2 )  and ( 2 . 3 )  was s o l v e d  numerically by t h e  l a r g e - p a r t i c l e  method 
[ii] using the algorithm of [12]. The integral quantities Ep, Epv, av, a2, and FI2 were 
calculated from Simpson's formula. The calculation program was written in the algorithmic 
language Fortran-77. The calculations were run on a Vesta-88 microcomputer. The typical 
time of calculation of one version of the motion of a gas suspension with five to ten par- 
ticle fractions was ~5 h. The calculation accuracy was monitored by a recalculation with 
reduced step sizes in time and space. 

All of the calculations were carried out using the following values of the thermody- 
namic parameters of the gaseous and disperse phases, corresponding to the experiments of 
[7, 8]: the gas was air [7, 8]: T o = 293 K, P0 = 0.i MPa, 0~0 = 1.29 kg/m ~, u = 1.4, at0 = 
(Tp0/p~0) ~ = 341 m/sec, c I = 716 m=/(sec2"deg), ~i = 1-85"i0-s kg(m.sec), ~i = 2.6"10-2 
kg.m/(sec3.deg); particles of quartz sand [7]: p~ = 2650 kg/m 3, c 2 = 754 m2/(sec=.deg); 
glass particles [8]: p~ = 2500 kg/m 3, c 2 = 766 m=/(sec=.deg). 

In the first series of calculations, as in the experiments of [7], the length L of the 
shock tube was 7.1 m, and the lengths of the HPC (x,) and the LPC (L - x...) were 1.8 m and 
5.3 m. The length of the region of undisturbed gas in the LPC was 2 m (x** = 3.8 m) and 
the length of the layer of gas suspension was 3.3 m. 

In the second series of calculations, corresponding to the experiments of [8], the 
lengths of the shock tube and of its HPC and LPC were 7.81, 2, and 5.81 m. The length of the 
region of undisturbed gas in the LPC was 1.05 m and the length of the layer of gas suspension 

was 4.76 m. 

There are no data on the particle size distribution function N0(a) in [7], unfortunately. 
Only the range of variation of the particle radii is given: ami n = 1.5 ~m and ama x = 4.5 ~m. 
In this connection, we chose a unimodal gamma distribution for the calculations: 

A~o(a)=Aaexp --~ ~ ( a , = c o n s t ) .  ( 2 . 4 )  

The c o n s t a n t  A was d e t e r m i n e d  f rom t h e  n o r m a l i z a t i o n  c o n d i t i o n  

~ 2 0 :  S ~-~ No (a) da. 

For  t h e  c hose n  p a r t i c l e  s i z e  d i s t r i b u t i o n  f u n c t i o n  ( 2 . 4 ) ,  we have  

3~~ t ,5) exp ( 0,75 V"~ err (z)] IZmax~-X 
A--  8 "V2 xa'------~, { [ -  g(g2 + Z2) + iZmin, 

~ �9 Z = ~ a . '  a m m ~ a ,  amax 

The c o n s t a n t  a ,  was s p e c i f i e d  t o  be 2 gm. 

More detailed information about the spectrum of the polydiserse gas suspension is given 
in [8]. The range of variation of particle radii (ami n = 2.5 ~m, ama x = 32.5 um) is given, 
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and the histogram of the fractional composition of the gas suspension, shown in Fig. !, was 
determined experimentally. 

In the present paper we propose to approximate the experimental histogram of [8] by the 
normal logarithmic law 

~r [ (2 5) ~%~~ exp ---2\ tno ] ] 

Here  a M i s  t h e  s o - c a l l e d  med ian  p a r t i c l e  r a d i u s  [ 1 3 ] ;  M i s  t h e  m a t h e m a t i c a l  e x p e c t a t i o n  (mean 
v a l u e )  o f  t h e  d i s c r e t e  q u a n t i t y  l n a j  ( j  = 1, 2 . . . . .  J ) ;  o i s  t h e  s t a n d a r d  ( rms )  d e v i a t i o n  o f  
the logarithms of particle radii from the mean; in2o is the variance of the discrete quan- 
tity inaj (j = i, 2,...,J). The corresponding equations for finding M and in2o from the 
experimental histograms are [14] 

J n.* J n* 
= = M ) - - .  

j ~ l  3 nO ~ ~ = I  t~'O ' 

where n~ and aj are the number density and radius of particles of the j-th fraction. 

The d i s t r i b u t i o n  f u n c t i o n  ( 2 . 5 )  s a t i s f i e s  t h e  n o r m a l i z a t i o n  
oo 

A' o a da ~ no. 
o 

B e c a u s e  t h e  r a n g e  o f  p a r t i c l e  r a d i i  i s  a c t u a l l y  f i n i t e ,  i n s t e a d  o f  t h e  f u n c t i o n  N~(a)  we u s e d  
t h e  f u n c t i o n  N0(a )  = k N ~ ( a ) ,  which  s a t i s f i e s  t h e  n o r m a l i z a t i o n  o v e r  a f i n i t e  r a n g e  o f  v a r i a -  
t i o n  o f  p a r t i c l e  r a d i u s  (~ = ami n + amax) :  

[ "No (a) da = no. 
A 

For all of the experimental data of [8] considered below, k = 1.214, M = 0.393, and !n~o = 
2.869. 

Let us turn to the results of numerical modeling of the propagation of shocks in poly- 
disperse inert gas suspensions as applied to the experimental conditions of [7, 81]. 

3. Some Results. In Fig. 2 we show calculated (dashed curves) and experimental (solid 
curves [7]) oscillograms of the pressure behind shocks passing through polydisperse gas sus- 
pensions: a) shock with a discontinuity; b) shock with a completely diffuse structure and no 
discontinuity. The initial relative mass content of the suspension in the LPC of the shock 
tube is P20/Pz0 = 1 and 1.7 for a and b, and the ratio of initial pressures in the HPC and 

' p/po 

I I o , .  msec I 

Fig. 2 
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LPC is P,/P0 = 11.65 and 11.06 for a and b. The pressure oscillograms correspond to sensors 
mounted in the LPC of the shock tube at a distance x = 4.8 m from its left end. A comparison 
of the calculated and experimental data (Fig. 2) indicates their satisfactory agreement. The 
maximum relative error in the theory in the zone of quasi-equilibrium motion of the phases 
does not exceed 4.5%. 

In Fig. 3 we compare calculated and experimental [8] Mach numbers M s = D/at0 at the front 
of a stepped shock propagating through a gas suspension (P20/Pl0 = 0.63) as a function of the 
distance it has traveled in the mixture. Experimental values are marked by dots, curve i is 
the numerical solution obtained using the system of equations (i.i)-(I.i0) with a normal- 
logarithmic particle size distribution function, 2 and 3 are numerical solutions correspond- 
ing to models of a monodisperse gas suspension with ama x = 32.5 ~m and ami n = 2.5 pm, re- 
spectively, 4 is the numerical solution [8] found from the model of a monodisperse gas sus- 
pension (a 0 = 13.5 pm), and 5 is the numerical solution of the authors of the present paper 
corresponding to the model of a monodisperse gas suspension with an effective particle radius 
a, = 17.5 ~m, determined from the acoustic theory of a gas suspension for brief disturbances 
[6]: 

a .  = N .  (a) aada T o ( a )  a a a  . (3. i ) 

The Mach n u m b e r  o f  t h e  s h o c k  i n c i d e n t  on t h e  g a s  s u s p e n s i o n  i s  M 0 = 1 . 2 5 8 ,  w h i c h  c o r r e s p o n d s  
t o  a r a t i o  o f  i n i t i a l  p r e s s u r e s  i n  t h e  HPC a nd  LPC o f  t h e  s h o c k  t u b e  P . / P 0  = 1 2 . 0 .  

As seen from Fig. 3, calculations using the model of a polydispserse gas suspension are 
in satisfactory agreement (within 6%) with experimental data. Calculations based on the model 
of a monodisperse mixture of gas and particles do not describe properly the damping of the 
leading shock discontinuity. It must be noted that the inadequate description of experimen- 
tal results based on the model of a monodisperse gas suspension with the effective particle 
radius (3.1) indicates the significant contribution of nonlinear effects to the evolution of 
the leading shock discontinuity. 

The qualitative influence of polydisperseness on the structure of an unsteady shock 
passing through a gas suspension is illustrated in Fig. 4, in which we show calculated pres- 
sure profiles at t = 2.835 msec (time is reckoned from the time of interaction of the wave 
with the cloud of particles). The parameters of the mixture and the other initial conditions 
are the same as in Fig. 3. The solid curve is the solution corresponding to the model of a 
polydisperse gas suspension and the dashed curve is the solution corresponding to the model 
of a monodisperse mixture with an effective particle radius 17.5 pm [6]. 

As seen from Fig. 4, the fractional composition of the suspension of disperse particles 
significantly affects the evolution of a passing shock: less intense damping of the shock 
discontinuity is observed in a polydisperse gas suspension, so that a longer zone of equali- 
zation of the velocities and temperatures of the phases is formed than in a monodisperse mix- 
ture of gas and particles. The latter indicates that in a polydisperse gas suspension, the 
interphase frictional force exerted by the gas on the ensemble of particles is less than the 
analogous force for a monodisperse mixture (interphase heat transfer plays a lesser role than 
interphase friction). 

In Fig, 5 we compare calculated and experimental [8] Mach numbers of a shock passing 
through a gas suspension as a function of distance traveled. Points i and 2 are experimental 
values corresponding to M 0 = 1.7 (P,/P0 = 22.0) and 1.48 (P,/P0 = 17.5) and P20/P10 = 1.4 
and 1.25, the solid curves are the numerical solution obtained using the above model of a 
polydisperse gas suspension and the same data (distribution function and spectrum) as in 
Figs. i, 3, and 4, and the dashed curves are the numerical solution [8] based on the model of 
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a monodisperse mixture with an effective particle radius 13.5 ~m. A comparison of these cal- 
culated and experimental functions indicates that the experimental data are described best 
(within 6%) by numerical solutions based on the model of a polydisperse gas suspension. 

The suggested method of writing and solving a system of integrodifferential equations can 
thus be used to calculate unsteady one-dimensional flows of inert polydisperse gas suspensions 
with a continuous particle size distribution function. Our calculations showed that the ex- 
perimental results can be described best by a model of a polydisperse mixture of gas and par- 
ticles. The structure and damping of a shock in a polydisperse gas suspension depend to a 
considerable extent on the disperse composition of the mixture. The effect of the collision 
of particles of different sizes behind 1 ~ M 0 ~ 2 shocks in mixtures with 0 < 020/Pi0 ~ 2 
and 1.5 ~ a ~ 33 ~m is negligible. 

The authors wish to thank O. N. Pichugin for assistance in compiling the computer pro- 
gram. 

LITERATURE CITED 

i. R. I. Nigmatulin, Dynamics of Multiphase Media [in Russian], Part i, Nauka, Moscow (1987). 
2. V. P. Myasnikov, "Dynamic equations of motion of two-component systems," Prikl. Mekh. 

Tekh. Fiz., No. 2 (1976). 
3. S. P. Kiselev and V. M. Fomin, "A continuous-discrete model for a mixture of gas and 

solid particles at a low particle concentration by volume," Prikl. Mekh. Tekh. Fiz., 
No. 2 (1986). 

4. S. P. Kiselev and V. M. Fomin, "Investigation of caustics in a two-phase gas-particle 
medium," Prikl. Mekh. Tekh. Fiz., No. 4 (1987). 

5. R. Ishii and H. Matsuhisa, "Steady reflection, absorption and transmission of small dis- 
turbances by a screen of dusty gas," J. Fluid Mech., 13___O0, 259 (1983). 

6. N. A. Gumerov and A. I. Ivandaev, "Propagation of sound in polydisperse gas suspensions," 
Prikl. Mekh. Tekh. Fiz., No. 5 (1988). 

7. E. Outa, K. Tajima, and H. Morii, "Experiments and analyses on shock waves propagating 
through gas-particle mixtures," Bull. JSME, 19, No. 130 (1976). 

8. M. Sommerfeld, "The unsteadiness of shock waves propagating through gas-particle mix- 
tures," Exp. Fluids, No. 3, 197 (1985). 

9. A. I. Ivandaev and A. G. Kutushev, "Influence of screening layers of a gas suspension on 
the reflection of shock waves," Prikl. Mekh. Tekh. Fiz., No. 1 (1985). 

i0. G. L. Babukha and A. A. Shraiber, Interaction of Particles of a Polydisperse Material 
in Two-Phase Streams [in Russian], Naukova Dumka, Kiev (1972). 

ii. O. M. Belotserkovskii and Yu. M. Davydov, Method of Large Particles in Gas Dynamics 
[in Russian], Nauka, Moscow (1982). 

12. A. I. Ivandaev and A. G. Kutushev, "Numerical investigation of unsteady wave flows of 
gas suspensions with isolation of the boundaries of two-phase regions and contact dis- 
continuities in the carrier phase," Chisl. Metody Mekh. Splosh. Sred, 14, No. 6 (1983). 

13. V. N. Zelenin, I. E. Konstantinov, S. G. Mikheenko, and O. N. Salimov, "Size distribu- 
tion of particles formed in the modeling of ablation of meteoritic matter," Astron. 
Vestn., 16, No. 3 (1982). 

14. G. A. Korn and T. M. Korn, Manual of Mathematics, McGraw-Hill, New York (1967). 

179 


